
10/15/2008

1

Recursion

Lecture 7

Object-Oriented Programming

Agenda
• Why Recursion?

• Definition

• Examples

• The Three Rules of Recursion

• Recursive Methods

• Activation Records

• Tree

• Equilateral Triangle

• Koch’s Snowflake

• Towers of Hanoi

• Recursive Factorial Demo

• Fibonacci Series
Lecture 7 Object-Oriented Programming 2

10/15/2008

2

Lecture 7 Object-Oriented Programming 3

Russian Dolls

Each doll contains a

smaller doll which in turn

contains a smaller doll…

Lecture 7 Object-Oriented Programming 4

Why Recursion?

• Why learn recursion?

– New mode of thinking.

– Powerful programming paradigm.

• Many computations are naturally self-referential.

– Many Sorting Techniques.

– A folder contains files and other folders.

– Factorial

– Trees and Spirals

10/15/2008

3

Lecture 7 Object-Oriented Programming 5

Recursion Defined

• Models problems that are self-similar
– Decompose whole task into smaller, simpler sub-tasks that are similar

– Thus, each sub-task can be solved by applying similar technique

• Whole task solved by combining solutions to sub-tasks
– Special form of divide and conquer

• Task is defined in terms of itself
– In Java, modeled by method that calls itself

– Requires base case (case simple enough to be solved directly, without
recursion) to end recursion; otherwise infinite recursion

Lecture 7 Object-Oriented Programming 6

Recursion

• Recursion solves a

problem by solving a

smaller instance of the

same problem.

• Think divide, conquer,

and glue when all the

subproblems have the

same “shape” as the

original problem.

10/15/2008

4

Lecture 7 Object-Oriented Programming 7

Russian Dolls

• Take Example of the

Russian Dolls

– Each doll contains a smaller

doll which in turn contains

a smaller doll…

• How do you know that

there are no more dolls?

• Could we apply the same

procedure to count the

participants of this class?

Lecture 7 Object-Oriented Programming 8

Counting the Number of Students

• Lets try it out….
count(C)

if (C == 1)

{

return 1

}

else

{

count(C-1)

n = n + 1

}

10/15/2008

5

Lecture 7 Object-Oriented Programming 9

Remember Turtles

• Use turtle to draw fractal shapes:

– complex shapes that are composed of smaller,

simpler copies of some pattern

– branch of mathematics developed by Benoit

Mandelbrot: characteristic is self-similarity

– natural for recursion!

Lecture 7 Object-Oriented Programming 10

Some Example of Fractals

10/15/2008

6

Lecture 7 Object-Oriented Programming 11

Some Islamic Art is Fractals Also

Lecture 7 Object-Oriented Programming 12

Drawing a Spiral

• Some Simple Fractal examples:

– spiral, tree, and snowflake

• Let’s start with the simplest: a spiral
The spiral starts at a particular point. It is made of
successively shorter lines, each line at an angle to the
previous one. The length of the first side (the longest
one), spiral’s angle, and amount by which to decrement
spiral’s sides can be specified by the user.

10/15/2008

7

Lecture 7 Object-Oriented Programming 13

Drawing a Spiral

Which angle are we turning?

Lecture 7 Object-Oriented Programming 14

The Three Rules of Recursion

• Approach every recursive problem as if it
were a journey; if you follow these rules,
you will complete the journey successfully.

• RULE 1: Find out how to take just one step.

• RULE 2: Break each journey down into one
step plus a smaller journey.

• RULE 3: Know when to stop.

10/15/2008

8

Lecture 7 Object-Oriented Programming 15

Drawing a Spiral Using the Turtle

•First Step: Move turtle forward to draw line and turn

some degrees. What’s next?

Lecture 7 Object-Oriented Programming 16

Drawing a Spiral Using the Turtle

Draw smaller line and turn! Then another, and another...

10/15/2008

9

Lecture 7 Object-Oriented Programming 17

Recursive Methods

• Recursive methods
– So far we are used to a method containing different message sends

to this, but now we send the same message to this

– Method must handle successively smaller versions of original task

• Method’s variable(s):
– As with separate methods, each invocation (message send) has its

own copy of parameters and local variables, and shares access to
instance variables

– Record of code, all parameters and local variables is called
activation record

Lecture 7 Object-Oriented Programming 18

Activation Records

• With recursion,

– Many activations of single method may

exist at once

– At base case, as many exist as depth of

recursion

– Each has its own copy of local variables,

parameters

– Each activation of a method is stored on

the “activation stack”

Very Important

Concept

10/15/2008

10

Lecture 7 Object-Oriented Programming 19

Activation Record of the Spiral

• public void spiral(steps,

angle, length, increment)

• e.g. spiral(100 , 90 , 0 , 3)

Lecture 7 Object-Oriented Programming 20

After 100 Steps

10/15/2008

11

Lecture 7 Object-Oriented Programming 21

Tree

The tree is composed of a trunk that splits into two,

smaller branches that sprout in opposite

directions at the same angle. Each branch then

splits as the trunk did until the sub-branch can

no longer be seen, then it is drawn as a leaf. The

length of a tree’s main trunk, angle at which

branches sprout, and amount to decrement each

branch can be specified by user.

Lecture 7 Object-Oriented Programming 22

Or a Broccoli or a Cauliflower

10/15/2008

12

Lecture 7 Object-Oriented Programming 23

Drawing a Tree using Turtles

• Broccoli or Cauliflower are essentially trees

• Compare each left branch to corresponding right branch:
– Right branch is simply rotated copy of left branch

• Branches are themselves smaller trees!
– branches are themselves smaller trees!

• Branches are themselves smaller trees!
...

• Our tree is recursive!
– Base case is leaf

Lecture 7 Object-Oriented Programming 24

Drawing a Tree

public void tree(int levels, double

length, double angle, double shrink)

• Levels states the number of branches the tree is going to

have.

• Length states the length of the initial branch.

• Angle states the relatives angle of the two sibling branches.

• Shrink is the factor with which the branch length is going

to shrink.

10/15/2008

13

Lecture 7 Object-Oriented Programming 25

Types of Trees

Lecture 7 Object-Oriented Programming 26

Equilateral Triangle

• What is an equilateral triangle?

• How can you draw an equilateral triangle

using a turtle?

10/15/2008

14

Lecture 7 Object-Oriented Programming 27

Koch’s Snowflake

• Invented by Swedish mathematician, Helge

von Koch, in 1904; also known as Koch

Island
The snowflake is created by taking an equilateral triangle

and partitioning each side into three equal parts. Each side’s

middle part is then replaced by another equilateral triangle

(with no base) whose sides are one third as long as the

original. This process is repeated for each remaining line

segment. The length of the initial equilateral triangle’s side

can be given by the user.

Lecture 7 Object-Oriented Programming 28

Koch’s Snowflake

10/15/2008

15

Lecture 7 Object-Oriented Programming 29

Koch’s Snowflakes

Any Similarity?

Lecture 7 Object-Oriented Programming 30

Towers of Hanoi

• Game invented by French mathematician Edouard
Lucas in 1883

• Goal: move tower of n disks, each of a different
size, from left-most peg to right-most peg

• Rule 1: no disk can be placed on top of smaller
disk

• Rule 2: only one disk can be moved at once

10/15/2008

16

Lecture 7 Object-Oriented Programming 31

Towers of Hanoi

Lecture 7 Object-Oriented Programming 32

Towers of Hanoi

• One disk:
– move disk to final pole

• Two disks:
– use one disk solution to move top disk to intermediate pole

– use one disk solution to move bottom disk to final pole

– use one disk solution to move top disk to final pole

• Three disks
– use two disk solution to move top disks to intermediate pole

– use one disk solution to move bottom disk to final pole

– use two disk solution to move top disks to final pole

• In general (for n disks)
– use n - 1 disk solution to move top disks to intermediate pole

– use one disk solution to move bottom disk to final pole

– use n - 1 disk solution to move top disks to final pole

10/15/2008

17

Recursive Factorial Demo

by Robert Sedgewick and Kevin Wayne

pubic class Factorial {

public static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

public static void main(String[] args) {

System.out.println(fact(3));

}

}

Lecture 7 Object-Oriented Programming 34

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

10/15/2008

18

Lecture 7 Object-Oriented Programming 35

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

Lecture 7 Object-Oriented Programming 36

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

10/15/2008

19

Lecture 7 Object-Oriented Programming 37

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

Lecture 7 Object-Oriented Programming 38

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

10/15/2008

20

Lecture 7 Object-Oriented Programming 39

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

Lecture 7 Object-Oriented Programming 40

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

10/15/2008

21

Lecture 7 Object-Oriented Programming 41

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

Lecture 7 Object-Oriented Programming 42

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

10/15/2008

22

Lecture 7 Object-Oriented Programming 43

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(0)
n = 0

environment

Lecture 7 Object-Oriented Programming 44

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(0)
n = 0

environment

10/15/2008

23

Lecture 7 Object-Oriented Programming 45

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(0)
n = 0

environment

1

Lecture 7 Object-Oriented Programming 46

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

11

10/15/2008

24

Lecture 7 Object-Oriented Programming 47

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(1)
n = 1

environment

11

1

Lecture 7 Object-Oriented Programming 48

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

12

10/15/2008

25

Lecture 7 Object-Oriented Programming 49

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(2)
n = 2

environment

12

2

Lecture 7 Object-Oriented Programming 50

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

23

10/15/2008

26

Lecture 7 Object-Oriented Programming 51

static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

fact(3)
n = 3

environment

23

% java Factorial

6

public class Factorial {

public static int fact(int n) {

if (n == 0) return 1;

else return n * fact(n-1);

}

public static void main(String[] args) {

System.out.println(fact(3));

}

}
6

Lecture 7 Object-Oriented Programming 52

Fibonacci Series

• Fibonacci series

– 0, 1, 1, 2, 3, 5, 8, 13, 21…

– fibonacci(0) = 0
fibonacci(1) = 1

fibonacci(n) = fibonacci(n - 1) + fibonacci(n –
2)

– fibonacci(0) and fibonacci(1) are base cases

– Each number in the series is sum of two
previous numbers

10/15/2008

27

Lecture 7 Object-Oriented Programming 53

Fibonacci Code

public long fibonacci(long n)

{

// base case

if (n == 0 || n == 1)

return n;

// recursive step

else

return fibonacci(n - 1) + fibonacci(n - 2);

} // end method fibonacci

Lecture 7 Object-Oriented Programming 54

Fibonacci Executed

return

return

+

+ return 1

return 1

fibonacci(2) fibonacci(1)

fibonacci(1) fibonacci(0)

return 0

fibonacci(3)

10/15/2008

28

Reading

Book Name: Object Oriented Programming in JavaTM - A

Graphical Approach

Author: Kathryn E. Sanders & Andries van Dam

Content: Chapter # 12

Lecture 7 Object-Oriented Programming 55

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by the

following people:

– Andy Van Dam (Brown University)

– Mark Sheldon (Wellesley College)

– Robert Sedgewick and Kevin Wayne (Princeton

University)

– Mark Guzdial and Barbara Ericsson (Georgia Tech)

– Richard Halterman (Southern Adventist University)

Lecture 7 56Object-Oriented Programming

